网站公告: 诚信为本,市场永远在变,诚信永远不变
联系我们

NETWAVE电池热线

15020032898

如果您有任何疑问或是问题, 请随时与我们联系

查看联系方式>>
netwave电池-02 当前位置:首页 > 最新资讯 > 公司新闻

netwave电池-02

文章来源:;时间:2018-02-28 17:30:16

netwave电池-02

图 9. 锌空气电池化学成分:( a )放电期间,( b )充电期间和( c )锌空气电池原型 [83] 。

总体而言,金属-空气电池,因为它们的低材料成本和高性能,为可再充电的电能存储应用提供了一种选择[61,73] 。在金属 - 空气电池中,整体电化学反应在方程 (5)。

其中Me是金属,例如Li,Ca,Mg,Fe,Al和Zn; n是取决于金属氧化的价态变化的值。

3.2.2.5 deka电池钠-β电池。

钠(Na)对于电池阳极来说是非常有吸引力的材料。钠-β电池采用固体电解质,具体的是使用β-氧化铝(β-Al2O3)作为电解质,在高温下具有良好的Na+ 电导率和电绝缘性[83]。根据阴极材料不同,钠-β电池分别被归类为钠硫(钠-S)和钠金属卤化物[14,30,45,83] 电池。Na-S由福特于1960年代特别为EV应用开发[84]。后来,这种电池开始普遍用于大规模电能存储,以支持公用事业和电网[63,84,85]。该电池具有高温特性,在300-350℃范围内工作[14,84,59,83]。此外,它具有足够的能量和功率密度, 分别为150-240WH/kg和150-230W/kg [45,53],4500次循环寿命周期[30,33,53,85] ,高能量效率80%-90%[45,53,63,86] ,并且它便宜且安全的。然而,这种电池内阻高[45],Na腐蚀性强,并且它需要被加热到约300℃维持电极的熔融状态才能正常工作[59,63] 。Na-S电池由熔融形式的固体钠作为阳极和熔融硫作为阴极,使用固体β氧化铝陶瓷电解质 [33,84]。电池系统如图10所示。Na-S电池中的整个电化学反应如方程 (6)。

其中x是3 - 5。

图 10. 钠硫电池:( a )在放电和充电过程中,( b ) Na-S 电池的管状设计图,( c ) Na-S 电池原型 [30,33,53,83] 。

图10显示了放电和充电过程中Na-S电池的化学性质[30,33,53,83]。在放电时,Na在Na-β界面处被氧化并产生正Na +离子,穿过β-氧化铝电解质,并与硫结合形成硫化钠(Na2SX)。电子通过外电路以产生期望的输出电压。当电池充电时,电化学反应过程发生逆转[33,45,53,83,84]。

自20世纪90年代以来,钠金属卤化物电池技术已经可以在电动汽车上应用,它们的电池电压比Na-S电池高[30]。这种类型的电池被称为零排放电池(ZEBRA)[3,87]。钠-金属氯化物(钠的MeCl2)电池在250-350℃温度范围内的操作 [14,30] 。ZEBRA电池与钠硫电池相比,具有对EV电源更具吸引力的一些特点:它具有较高的能量密度,较少的腐蚀,本质安全性以及较Na-S更好的耐过度充电和过度放电性能,这是因为半固态阴极[45,84],更长的循环寿命和更低的电池成本 [3,14]。然而,ZEBRA电池具有相对低的比功率150 W/kg,并且他们需要热管理[14]和自放电比较严重[3,88,89] 。Na-NiCl2,NA- FeCl2和Na-Ni-FeCl2 ZEBRA电池可用于能量储存应用[87-89] 。

两种钠-β电池之间的主要区别是额外使用的盐酸铝钠(NaAlCl4)作为第二电解质[45]。ZEBRA电池的活性材料是熔融钠作为阳极,固体β-氧化铝陶瓷作为主要电解质,熔融盐酸铝钠(NaAlCl4)作为辅助电解质,以及多孔金属氯化物(MeCl2)作为阴极[14]。金属氯化物可以是氯化镍(NiCl2),氯化铁(FeCl2)或氯化镍铁(Ni-FeCl2)的组合。在Na-S电池中的整个电化学反应如方程 (7)。

图11显示了标有所有元件的ZEBRA电池原型设计视图[45,83,87]。充电和放电过程中的电化学反应类似于Na-S电池反应过程。当放电时,熔融的Na和NiCl2 被转变成Ni和盐(NaCl)中,而在充电时过程反转[83],如方程 (7)。如果电池过充电,那么主电解质可能被分解,并且熔融的辅助电解质NaAlCl4与Ni结合,从而形成NiCl,熔融Na和AlCl 3,如方程(8)所示,而不是分解NaAlCl4 以Na,Cl2和AlCl3的形式存在[14,45,87]

NaNiCl2电池特别用于大型或中型电力存储的及电动汽车。先进的ZEBRA电池在长时间使用期间已经取得了显著的技术进步[89]。

图11. ZEBRA电池原型设计视图[45,83,88]。

3.2.2.6 deka电池锂电池。

由于其高能量密度,由于其高的比能量和比功率,锂SBs被认为是用于EV能量存储最有前途的电池 [3,83]。另外,锂电池没有记忆和无有害物质,如汞和铅等[3] 。但是,这种电池类型比较昂贵;需要安全防护和电池平衡系统,以确保在相同的电压和电量水平上电池性能一致性[3,30,33,63,90,91]。

锂电池有专为高温环境应用设计的品类。除了钠-β电池,锂-铝-铁(锂-铝- FES)和锂-铝-铁(锂-铝-的FeS2)都是高温锂电池[14,45,59]。这些锂硫电池在所有锂电池中具有最高的能量容量。但此类锂电池循环寿命短[3],需要热管理,并且由于需要维持工作温度会造成大量能量损失[14]。锂硫电池的操作温度范围375-500℃ [14,45]。高温锂-硫电池由锂铝合金作为阳极,铁硫化物为阴极,熔融的锂氯化物氯化钾作为电解质和隔膜[14,59] 。在这些电池中,锂-Al合金被用于控制锂的活性,和铁硫化物用于防止铁的腐蚀[14,59] 。在两种锂硫电池类型中,总体电化学反应如方程(9)和(10)所示。

在环境温度下正常工作的其他锂电池,主要是用于电动汽车应用的锂聚合物电池和锂离子电池[14,86]。聚合物和锂离子电池之间的区别在于,前者使用锂金属作为一个反应器,而后者系统中没有金属锂 [14] 。锂聚合物电池适用于各种制造形状,并表现出坚韧性和可靠性。然而,它们的导电性和功率密度都比较差[3]。

由于其体积小,重量轻和具有潜力[33,51,63,83,92],锂离子电池在储能和便携式电气和电子产品中很受欢迎。1991年,索尼公司开始生产锂离子电池,这种电池原本在20世纪60年代由贝尔实验室提出[62,85,93]。锂离子电池具有高能量密度,500至2000 W / kg的高功率密度[64,93],自放电低,寿命长[92]。然而,锂离子电池的生命周期是明显受到温度的影响,并可能在遇到深放电时寿命受损 [63] 。按照正极材料的不停,锂离子电池的类型被划分为:锰酸锂(LiMn2O4),磷酸铁锂(LiFePO4),镍-锰-钴 -氧化物(LiNiMnCoO2),锂镍钴铝氧化物(LiNiCoAlO2)和钛酸锂(Li4Ti5O12)电池[14,92]。

钴酸锂电池是被开发的第一个类型。氧化钴是比,镍和锰等元素都要昂贵的元素,后者更具有价格优势 [94] 。LiFePO4 电池功率密度高,并且在所有锂离子电池中成本最低[3,92]。LiFePO4 电池在热稳定性好,化学性能稳定性好[3],因此能够广泛应用于电动汽车。由于Li4Ti5O12 电池比其他锂电池充电更快,在电动汽车中也有应用[3]。锂离子电池由作为阴极的锂金属氧化物(LiMeO2,例如LiCoO2,LiMn2O4,LiFePO4,LiNiMnCoO2,LiNiCoAlO2和Li4Ti5O12),有机碳酸盐作为电解质,锂化石墨碳作为阳极,以及隔膜组成[45,65,84,86,94,95]。锂离子电池的整体电化学反应如式(11)所示。

图12显示了放电和充电过程中锂离子电池的化学性质[31,45,84,95]。

电池充电时,Li+ 从阴极流向阳极电解质并通过与电子(e -)结合并沉积在碳层之间而形成锂原子。在放电过程中,这些过程反向执行[33,53,65,84,94]。目前,正在为下一代EV应用开发锂离子电池技术[65,83,92,96]。

图 12. 锂离子电池的化学特性:( a )在放电和充电过程中和( b )锂离子电池的圆柱视图 [31,45,84,95] 。

所有的电化学的 SB 用于EV的ESS总结在表1 [3,14,45,56 - 58,62,69] ,表格中展示了二次电池的主要特性参数:能量,能量密度,功率,能量效率,电池的生命周期,工作温度范围,每单位能量成本,和优点和缺点。图13 从比能量和比功率角度描绘了电化学 电池的技术成熟度 [97] 。比较中,锂离子电池在规模化商用的电池中,比能量和比功率具有明显优势 [56,64,98] 。此外,低成本锂电池材料和电池管理系统的开发 , 在 降低制造成本方面取得了进展 [60,90,91],将有助于锂电池在电动汽车以及其他储能形式中的进一步应用。此外,先进的LA,镍镉,镍氢,NIH2,锌-空气,钠-S,和NA-NiCl2等具备鲜明特点的电池,在特定的车辆类型中也得到应用。

表格1,电动汽车电池的典型特征。

Aa 80%放电深度;

B 3h放电倍率;

C 机械充电;

图13. 多种电化学电池的比能量和比功率分布 [97] 。

3.3 deka电池化学储能系统(CSS)

化学储能系统(CSS)通过系统中化合物的化学反应来储存和释放能量 [59]。FC是一种典型的化学储能系统,可将化学能的燃料不断转换为电能[14,45,58]。燃料电池 FC 与电化学电池之间的主要区别就是他们提供电能的方式。 在 FC 中,燃料和氧化剂由外部 提供 ,并且这些部件集成在 电池内部(金属 - 空气电池除外)[45]。FC的优势在于只要向其供应活性物质就可以发电。燃料电池效率在40%-85%范围内[14,58]。

FC 技术已被证明 , 作为能量产生源,可以减少 化石燃料的使用和CO2 排放[58,88,89] 。燃料电池由液体或气体燃料作为阳极,氧气,空气和氯气作为阴极侧的氧化剂。特别是基于氢的 FC ( HFC )在市场上很受欢迎。 HFC 氢气和氧气的组合 来发电。这种结合可以在电和水之间再生和逆转[14]。根据燃料的不同,HFC被分为直接和间接系统燃料电池[45] 。在直接 FC 系统中,燃料(例如氢气和甲醇)直接反应,而在间接系统中反应 的FC,燃料(例如,化石燃料和天然气)先转化成是富氢气体,然后 供给到电堆进行反应[99] 。基于燃料和氧化剂的组合,电解质的类型,操作温度,和应用,FC被划分成几种类型; 这些类型包括碱性FC(AFC),磷酸FC(PAFC),固体聚合物燃料电池 - 质子交换膜FC(SPFC-PEMFC),再生FC(RFC),固体氧化物FC(SOFC),直接甲醇FC(DMFC)和熔融碳酸盐FC(MCFC)[3,14,45,46]。AFC,PAFC,PEMFC和RFC直接用氢燃料作阳极。燃料电池中的整体化学反应如方程式 (12)。

图14 显示了简单的氢燃料电池化学反应过程[14,46,58] 。注入的氢燃料通过在燃料电极的催化表面上解离,形成氢和电子。氢离子通过电解质到达氧电极的催化表面。同时,电子通过外部电路移动给负载供电。在其他电极的外侧,水通过氢离子,氧和电子结合而产生 [45] 。在再生闭环过程中,电源电解器将水分离成氢气和氧气再次供给电池,从而产生电力和水,这个闭环只需要电力就可以反复循环 [45] 。

图14. HFC化学反应[14,46,58]。

图15示出了不同类型FC在操作温度下的各种输出功率水平[3,100] 。AFC,PEMFC和DMFC在常温下运行,适用于中低档电力存储应用。PAFC使用中温FC。这些FC,由于其操作效率高,设计简单和低排放而被运用于交通运输[3,100]。MCFC和SOFC在600 - 1000°C [3,45,100]的高温下运行。这两个FC用于大规模电力存储,电力公司和电网发电应用。DMFC使用甲醇(CH3OH)直接作为燃料,因为它比氢更容易储存[53]。DMFC是一种高能量密度的FC,但其电效率低,并且排放CO2[53]。SOFC具有较高的燃料效率,比DMFC更好的稳定性,但它是昂贵的,需要高温。由于发电效率比较高,SOFC作为一个潜在的辅助电源被用于EV上,因为它们的高电子商务效率 [53,101 - 103] 。

SPFC(PEMFC)对于EV应用来说具有一定的吸引力,因为它具有所有FC中最高的功率密度,结构中使用了固体聚合物膜电解质和铂催化的多孔电极[14]。只是固体聚合物膜电解质和铂催化电极的成本很高。目前,研发正在推进降低其电极和电解质的材料成本。烃膜成本较低,被认为是替代品 [14,15,104]。PEMFC存在低压应用的场景,可以为小型电子系统充电[45]。

图15.二的技术FF erent类型FC的[3100] 。

其他类型的FC还包括金属空气FC(MAFC)和微生物FC(MFC)[53,73]。微生物燃料电池是高能量密度的燃料电池,成本最低[53]。虽然MAFCs有充电问题,但对其进行的研究正在进行中,因为该FC是电动汽车和海洋船只ESS的理想选择。MFC是通过微生物的催化反应从化学能量产生电能的生物FC系统[105]。MFC是基于介质或者是无介质的。在MFC介质中,介质(如甲基蓝和腐殖酸)加速电池反应,将电子转移到电极上[105,106]。但是,介质是有毒的,而且价格很高。在无介体MFC中,电化学活性细菌如希瓦氏菌和嗜水气单胞菌帮助转移电子[105,106]。微生物燃料电池使用基于土壤或光养生物阳极和纳米多孔隔膜[105-107]。这些类型的MFC现在适用于污水处理和直接从植物生产电力,例如大米和番茄[107]。微生物燃料电池主要用于低功率应用,诸如无线传感器网络,废水处理,氢气产生,生物传感器,医疗应用,以及教育试剂盒等[105-107] 。

3.4 deka电池电存储系统(EeSS)

EeSSs迪与ESS存在差异,主要在于他们的的存储技术。通常,一个EESS以电的形式在隔离的电场或者电流形成的磁场中直接存储电能。超级电容(UC)和超导体都属于EeSS。

3.4.1 deka电池超级电容器(UCs)

就结构和功能而言,UC与普通电容器类似。然而,UC可以具有高容量,其值为千法拉[3,33],被称为超级电容器。UC的比功率约1000 - 2000W/kg,能量效率95% [3,14,46,108 - 111] 。在所有ESS中,UC拥有最长寿命,近40年。由于UC具有高功率存储功能,在电动汽车中被用于满足大功率需求; 它不需要维护,而且温度不敏感,操作时间长[3,14,111]。用于快速充电和放电,在电动制动能量回收过程中,UCs被用作能量存储器,并且为急速加速需要的能量来源[63,108-111]。

UC分为三类,即电双层电容器(EDLC),赝电容器和混合电容器[3,14,64]。EDLC具有比其他的电容器更高的功率密度,但它比能量低, 5-7Wh /kg,高的自放电率,且成本高[3,63,64] 。由于这些原因,UCS一般都是与电池、FCS或者其他储能形式联合应用,这样就可以获得一个功率密度高,能量密度高,使用寿命长的储能系统 [63,65,108 - 114] 。图16示出了单个UC单体结构[115]。UC使用高介电常数的介电材料,多孔活性碳表面电极,有机或含水电解质和薄的多孔隔膜[14,33,63]。有机UCs比UCs具有更高的能量密度和端电压[63]。有机UCs通常用于驱动电动汽车[14]。如图16所示,离子通过UCs中的电解质在电极之间传播。

存储在电容器中的能量与其电容成正比,并与电极两端的电压成正比,随着电极表面积和电介质材料介电常数的增加,电极间距离的减小,容量增加,并且随着电极,数值关系如方程 (13)所示[14,15,33,58]。

其中WC 是静电能量,C是UC的电容值,V是电极两端的电压,Q是电荷,ε是介电材料的介电常数,A是电极的表面积,d是电极。

图16.EDLC电池结构[115]。


上一条:NETWAVE电池-01
下一条:NETWAVE电池-03
【返回列表页】
Deka-USA    座机:0532-80968262    手机:15020032898
版权所有:NETWAVE蓄电池厂家    ICP备案编号:ICP沪备3874521682号