文章来源:;时间:2018-02-28 17:30:13
deka电池概述 电动汽车(EV)技术解决了减少温室气体排放的问题。电动汽车的概念侧重于替代能源的利用。然而,电动汽车系统目前在能源存储系统(ESS)方面面临安全、尺寸、成本和整体管理问题多个方面的挑战。此外,先进的电力电子技术在ESS中的应用,是提高EV性能的另外一个关键环节。本文回顾ESS技术,分类,特性,结构,电力转换,以及在EV上应用的优点和缺点。此外,本文讨论的各种类型的电池,根据它们的能量存储机理,材料组成,基于其容量的一般电力输送过程和整体的ESS系统中的电力电子技术和预期寿命。本文综述了下一代电动汽车应用中ESS技术可持续发展的诸多因素,挑战和问题。 1deka电池介绍 通过确保适当利用先进技术,世界正在走向发展。许多发展中国家和欠发达国家正在争相实现发达国家的技术进步。解决公民的交通需求象征着技术和经济增长的进一步发展。全球流动性和许多城市的发展明显地增加了车辆在道路上行驶的数量。根据参考文献[1],从1990年到2014年销售约295.57百万辆汽车,2014年销售总额的31.70%。预计2015年销量增长3%[1]。 车辆数量的增长已经导致两个主要问题,即,交通拥堵和二氧化碳(CO2)的排放过量。一般来说,常规车辆在消耗大约总燃料能量85%[2,3],其余以CO2,一氧化碳,氮氧化物,碳氢化合物,水和其他温室气体(GHG)的形式消散热量; 总气体排放量的83.7%为CO2 [4] 。CO2排放量,从1990年的227亿吨急剧增加至2013的 352.7亿吨[5]中,如图1所示。随着CO2从1990年开始的缓慢上升,见于图1,在未来十年,该增长率从2003年至2008年逐年加快。在2013年,排放量减小至3.80-2.00%。二氧化碳是导致全球变暖的温室气体之一,这是一个严重的全球环境问题。 脱碳在减少二氧化碳运输部门的排放量,具有重要作用。对化石燃料驱动车辆的内燃机的改进还远远达不到CO2 排放目标。因此,需要先进技术才能达到长期和更高的排放目标。CO2和其他温室气体排放量的减少,是许多国家和研究的重要问题。许多国家和地区独自或联合通过了计划,通过电动车辆(EV)代替常规的内燃机车辆的方式减少CO2的排放[6,7] 。减排计划已经设定了未来几十年的温室气体排放目标[4]。电动汽车具有高效率和低排放甚至零排放的优点,因而吸引了各方的关注。 [8]。 电动汽车将电力储存在电化学电池,燃料电池(FC)和超级电容器(UCs)中运行,其最终电力来源包括发电厂和可再生能源。根据动力来源不同,电动汽车有几种类型,如混合动力电动汽车(HEV),纯电动汽车(BEV),插电式混合动力电动汽车,光伏电动汽车和燃料电池电动汽车[9,10]。不同于传统的车辆,电动汽车使用一个或多个动力电源和电动机[10,11]。电动汽车中使用再生制动和热电发电机,以减少能源浪费。车辆的制动过程吸收其能量,将其转换回电能,并将能量返回到电池,而热电发电机将热量从发动机和机器系统自动转换为电力[3,11,12]。电动汽车电动机通常不需要使用传统的变速箱,并且在很宽的速度范围内具有高转矩。此外,电动汽车在静止时不消耗任何动力[13],在运行时消耗75%以上的能量。目前,电动汽车平均使用1千瓦时电量续航4~8英里[3] 。 电动车是高度依赖于能量存储技术,例如 FC和UCS [3,14 - 16] ,它需要从电网充电。电动汽车的额外能源需求是普通电网的新挑战。为了满足额外的电力需求,大多数国家正在投资可再生能源,如太阳能和风能 [16] 。 车辆自身的可再生能源和存储的能源可以在用电高峰期间给大电网供电 ( V2G ) , 在用电低谷期间从大电网充电恢复动力性能 [17-19]。存储在电池系统和其他存储系统中的电能被用于操作电动机和附件以及车辆的基本系统 [20] 。VE上的电池存储能量,除了用于驱动电机,还同时给车辆附件供电。车辆的续航和功率性能完全取决于电池的性能 [3,14 - 16] 。 电动汽车中的电能存储需要考虑许多要求。管理系统,电力电子接口,电源转换,安全和防护对提高能量效率和实现EV分布式管理都非常重要 [21-25] 。电动汽车需要高科技提供长途续航和高能量使用效率。能源的选择和管理,能量储存和储能管理系统对未来电动汽车技术至关重要[23]。 能量储存系统(ESS)正在成为电力市场中的重要一环,提高可再生能源的比例,减少二氧化碳排放量[4,5,8] ,重新定义智能电网概念[26-29] 。ESS对整个电力系统具有重要影响; 它提供了连续和灵活的电源供给并提高电网应对不可控的额外功率波峰的出现。此外,ESS确保了因自然灾害造成的电力危机期间,仍然能够为消费者提供可靠的服务 [30]。 本文侧重于ESS制造,利用,回收和处理过程中的环境和安全问题。不同类型的能量存储技术按照发电过程,特点,以及在电动汽车上的应用进行一一解释。分析比较现有的电化学储能单元的特征。 图2. EV架构:a)电池供电的EV和b)串并联全HEV 图2显示了电动汽车的传动结构[3]。图2(a)和(b)分别给出了一个BEV驱动系统和一个混合动力汽车原理框图。 2 deka电池典型ESS系统结构 ESS系统的典型结构与应用该系统的场景及具体参数有关。ESS包括机械的,电化学的,化学的,电的,热的和混合的等各种类型[30] 。这些系统按照结构和组成的材料成分分类[14,30] 。图3展示了储能介质的详细分类,其中能够应用于EV的类型,涂成灰色。飞轮,二次电化学电池,FC,UC,超导磁线圈和混合ESS通常用于EV动力系统[9,10,14 - 16,23,30 -33]。 图3根据它们的结构形式和材料成分划分的储能系统分类(ESS)。 3 deka电池能量存储系统 本节回顾全部储能形式的结构,电能转换过程,性能特点,应用的优点和缺点。 3.1 deka电池机械存储系统 机械存储系统(MSS)通常用于发电过程。三个典型的机械储能系统包括抽水蓄能(PHS),压缩空气储能(CAES),以及飞轮储能(FES)。应用最广的MSS是PHS,用于抽水电站。在水量大的季节,将一部分水泵送到高处,储存水势能,利用水自高而低的势能,带动涡轮机发电。这个存储系统贡献了世界大约99%的电力存储容量,大约是全球发电容量的3% [34]。CAES,压缩空气与天然气混合,膨胀,并进一步转化成混合气体,输送到燃气涡轮发电机以产生电力 [35] 。CAES的实时需要等温、绝热和非绝热储存系统 [33]。CAES适用于大容量电力生产。 3.1.1 deka电池飞轮储能 由于电力电子和材料工程的进步,飞轮储能系统(FES)适用于电动汽车和动力系统[36]。能量效率在90-95%和功率规模0-50 MW [36 - 43] 。飞轮系统包括在腔室中旋转的圆柱形本体,联接轴承,以及能量传递装置,发电机/电动机一起安装在一个共同的轴上[15,30,36,37] 。保持飞轮不断旋转的能量被转换成推动传动装置的电能。 图4. 基本FES系统结构:(a)两个机械系统和(b)双向能量流 的单一机械系统 [30,33] 。 图4示出了双向能量流和一个机系统的的基本FES系统结构形式[30,33] 。飞轮上的能量都是以动能的形式存在的,由公式(1)定义如下: 其中E是动能,I是惯性矩,ω,m和r分别是飞轮的速度,质量和半径。 从公式(1)可以看出,该能量可以通过增加飞轮的惯性或转速增加。FES系统的主要优点是高的能量和功率密度,理论上无限的充电和放电循环,成本低,寿命长,并且没有放电(DOD)的深度影响 [33,36,37] 。但是,由于风阻和轴承摩擦损失,FES具有很高的自放电特性。FES可以分成高速和低速系统[36 - 39]。高速FES系统通过发电机传输能量来驱动负载,而低速FES系统通过电机接收来自电源的电能。先进的材料技术、设计、几何形状、构建先进的超高速飞轮(UHSF)和无摩擦轴承[36 - 39],FES系统被应用于混合动力电动汽车的储能应用[40-43]。 3.2 deka电池电化学储存系统 所有传统的可再充电电池都属于电化学存储系统(EcSSs)[44],特别地指,液流电池( FB )和次级充电电池 EcSSs 。在 EcSSs ,能量从电到化学能 , 反过来再从化学能到电能,能量效率高,物理变化小[44] 。但是,化学 反应可能会 损耗电池寿命,消耗部分能量 [45] 充放电过程 ,没有 有害的辐射和维护工作量小[46]。 3.2.1 deka电池液流电池(FB) FB是可充电的,在FB中,能量储存在电活性物质中。电活性物质溶解在罐中的液体电解质中,通过电池将化学能转化为电能,再将液体泵出反应室。氧化还原流(RFB)和混合流(HFB)是FB的具体实施方式[30] 。 RFB 罐的总大小 反应出电池的总能量的多少[30] 。 RFB表现出高的生命周期稳定性,高效率,灵活 的功率和容量要求 ,这使 液流电池在自主 和独立电网系统中得到应用[47] 。图5 显示了 钒RFB(VRFB)的 结构[47]。在VRFBs中,两种液体带有溶解的金属离子的电解质被泵送到电池塔里面反应。多孔电极,称为阴极和阳极,通过膜分离彼此分隔,电能传递过程,只允许质子通过隔膜。在充电时,活性物质在电极表面反应产生电流;放电期间,溶解的活性物质从反应罐提供电荷给电极 [30] 。RFB的典型实例是铁-钛,铁-铬,以及聚S-溴系统 [48 - 50] 。参考文献提供了几种RFB模型[48 -50] 。 图5钒氧化还原液流电池系统[47] 。 HFB有两个富于活性物质的部分; 一个存储在电池中,另一个留在槽中的液体电解质中。HFB电池是二次电池(SB)和RFB的组合。在RFB中,容量是通过电化学电池的尺寸定义。HFB遵循Zn-Ce和Zn-Br体系特性。在充电时,锌被沉积在电极上,并在放电过程中,锌离子流回到溶液[30] 。FB预期寿命15-20年,4 – 10h放电范围,和60 -70%E FFI ciency 效率范围[51]。目前,RFB和HFB正在设计用于社区能源存储和公用事业规模应用的电力存储,用于提高电能质量,UPS,调峰,增加供电安全以及与可再生能源系统集成[52,53 ]。 3.2.2 deka电池二次(可充电)电池 SBs主导着便携式储能设备市场,电动汽车和其他电力和电子应用。这些电池以化学能的形式储存电力,并通过电化学反应过程产生电力[30]。通常,SB由两个电极组成,即阳极和阴极; 电解质、隔膜 和一个外壳[24,32,53]。SB具有良好的特性,如高能量,高功率密度,平坦的放电曲线,低电阻,无记忆,和宽范围的温度性能[24] 。但是,大多数电池含有有毒物质。因此,电池处置过程中的生态影响必须考虑[54]。由于其先进的技术和合理的成本,在EV应用中,主要由蓄电池提供具有高能量密度,高功率密度的蓄电系统 [55-58] 。各种类型的电动车主要包括铅酸(LA),镍基(Ni-Fe,Ni-Zn,Ni-Cd,Ni-MH,Ni-H 2),锌 - 卤素(Zn-Cl 2,Zn-Br 2),金属空气基(Fe-Air,Al-Air,Zn-Air),钠-β(Na-S,Na-NiCl 2),高温锂(Li-Al-FeS ,Li-Al-FeS 2)和一般环境锂[锂聚合物(锂聚合物),锂离子(锂离子)]电池[14,30,45]。 3.2.2.1 铅酸电池。自1860年以来,铅酸电池一直被用作商业能源 [45]。LA电池常见的用法是每台内燃机(ICE)车辆起动电源,由于其坚固耐用,运行安全,温度耐受性好和低成本,通常可用于应急电源,可再生能源储存和电网调峰 [15,30]。电池由Pb作为负极,PbO2 作为正极,H2SO4 作为电解质[14,58]。发生在LA电池中的电化学反应,如方程 (2)。 图6显示了放电和充电过程中的LA化学特征。在放电期间,产生PbSO4,在充电时水被释放。电池日历寿命6 - 15年,在80%DOD最多2000的循环寿命, 70 - 90%充放电效率[14,30] 。起动点火(SLI)电池和UPS电池是LA电池的常见应用,具有较小的额定电压6V,8 V和12 V [58,59]。最近,阀控式LA(VRLA)由于其高功率,低的初始成本和快速充电能力,无需保养的要求[14] ,已经成为铅酸电池的主流。目前的研究主要集中在通过先进VRLA电池材料,降低电池的尺寸和重量,保持高能量密度方面[60,61]。普通VRLA电池包括玻璃纤维电池(AGM)和GEL电池。 图 6. 铅酸电池化学:( a )放电期间,( b )充电期间和( c ) LA 电池原型 [14,30] 。 AGM电池由含有玻璃纤维的电解液组成,该电解液是一种固体材料,可以吸收并容纳酸液而不会泄漏。这些类型的电池体积小巧,占用空间少,抗振性比标准电池高。这种电池类型的特殊之处在于它在充电过程中将氢气和氧气重新结合到装置内部的水中,从而限制了水的损失 [45,58] 。GEL电池由凝胶态电解质制成,其不完全固态电解质形态,可以包含酸液而没有泄漏。与其他电池相比,GEL电池需要较慢且可控的充电。然而,凝胶电解质可能会出现气泡问题,这可能造成电池的永久损坏 [58 - 61] 。 3.2.2.2 deka电池镍基电池。 镍基电池利用氢氧化镍作为正极,负极材料。根据有多种。根据负极材料额种类不同,镍基电池可以分为:镍-铁,镍-镉,镍-锌,镍氢,和Ni-H2 [3,14,30,45,62] 。通常,在镍基电池中,活性材料羟基氧化镍作为正极,氢氧化钾作为电解质,金属Fe/Cd/Zn,MH或H2 材料作为负极 [14]。发生在镍基电池中的整体电化学反应式(3): 图7显示了放电和充电过程中镍基电池的化学成分。在放电和充电时,形成Ni(OH)2 和Fe/Cd/Zn(OH)2,M可以有不同成分组成。镍-铁和锌电池,之所以不太实用于电动汽车,是由于它们功率性能低,成本高,循环寿命短,和维护需求高[14] 。的Ni-Fe和Ni-Zn系电池能量效率75%左右。镍镉和金属氢化物目前用于驱动电动汽车,因为它们具有很高的寿命周期(2000次或更多)和能量密度。然而,镍镉具有高的记忆特性,并且价格高,是LA电池的10倍以上 [14,62 -67]。虽然这种类型电芯的所有镍基电池中全部的优点,需要考虑回收问题和材料有毒性问题 [64 - 67]。与此相反,镍氢具有低记忆效应,微小的环境影响性,和大的工作温度范围[14,30,45,62] 。尽管在运行过程中产生热量,并且需要复杂的算法和昂贵的充电器,但环境友好性和其免维护性确保了镍氢电池比电源电池更适用于电动汽车[14] [3]。Ni-H2具有高容量率,长寿命周期,并且容忍过度充电或过度放电而不受损害。然而,这种类型电池价格昂贵,具有与H2 压力成正比的自放电,低体积能量密度,是特别为太空探测生产的电源类型[45,62]。 图 7. 镍基电池化学。( a )放电期间,( b )充电期间,和( c )镍基电池原型 [14,30,45,62] 。 3.2.2.3 锌卤电池。 锌卤电池包括Zn-Cl2 和Zn-Br2,这些电池在EV能源存储方面是可行的。1970年开发了用于电动汽车和静态储能的Zn-Cl2 [14]。Zn-CL2能量密度约90Wh/ L,功率密度约60瓦/千克。Zn-Br2电池适合用于EV能量储存,其能量密度70瓦时/千克,具有快速充电能力,和低的材料成本 [14,45,70,71]。然而,这种电池类型由于具有较低的比功率(90 W / kg),溴的高反应性以及电解液循环和温度控制系统尺寸较大,因此近年来在EV中的应用已经很少[14,45,70]。仍然有研发正在推进用于车辆的Zn-Br2 电池 [71]。Zi-Br2 电池的整体电化学反应用方程 (4)。 在Zn-Br2电池,能量通过Zn和Br组成的系统的电化学反应进行存储和放出,该系统由如下部分组成:锌,溴,锌溴水溶液电解质和电解质存储装置和微孔塑料的隔膜。图8显示了Zn-Br2电池系统[14,45]。在该系统中,锌溴溶液的电解液通过泵在两个电极之间循环。在充电时,反应在负极上沉积锌而在正极上沉积溴;而在放电期间,在其各自的电极上形成锌离子和溴离子。 3.2.2.4 deka电池金属空气电池。 金属电极作为阳极,从取之不尽空气供应氧气作为阴极 [30,45,72 - 76] 。在金属空气电池中,锂,钙,镁,铁,铝,和Zn被用作阳极的金属 [72 - 76] 。在这些元素中,锂-空气(Li-空气)电池是最具EV应用前景的。因为它的理论能量密度非常高,11.14kWh /kg,不考虑空气,它的比能量超过其他类型电池的100倍以上 [30,74,77-80] 。然而,这种类型电池的起火风险很高,含有水汽的空气就可能造成起火 [30]。 钙-空气(CA-空气)电池具有高能量密度,但它容量衰减非常快,并且比较昂贵[72] 。通常,镁-空气(MG-空气)电池具有高比能量700Wh kg,设计用Mg合金取代Mg单质,在海底车辆上应用[45] 。电化学的可充电铁-空气(铁-空气)电池具有低的比能量75Wh/ kg和与其它金属-空气电池相比更低的成本 [45,72,73]。其全寿命周期成本较低,并且活性材料或形状不会因长时间的电气循环而变形[45,73]。 铝空气(铝-空气)电池具有高比能量,端电压,和安培-小时容量。然而,由于放电期间的水消耗,这些优点减少[45,72]。铝空气电池可机械充电,利用水系电解质,在没有条件电气充电的环境,每次放电后更换铝电极即可实现充电 [45]。先进的Al -空气电池技术用的铝合金制造电极,以避免腐蚀,并且在大的电流密度范围内可以获得98%或以上的库仑效率[46] 。这种类型的电池通常用于为船舶或水下车辆提供动力。铝氧(Al-O2)电池也可以在其他形式下使用,Al-O2 的辅助使得氢-FC 电池获得了几乎双倍的比能量[45,72-76] 。 锌空气(锌空气)电池在技术上是可行的。该电池具有多种FC和常规电池的特性,并且可以进行电气和机械充电。锌-空气电池的反应速率是通过改变气体流量实现的[30,45,72-74,81,82] 。先进的可充电锌空气电池使用双功能空气电极以获得更好的使用寿命,并且可机械充电的锌空气电池的设计方式可以更换放电阳极以避免形变[45,81,82 ]。高性能应用中,设计考虑利用锌-空气电池的高比能量特性,和LA 电池的高功率特性,构成锌-空气混合LA电池存储系统[45,81,82] 。 图9 显示了在放电和充电过程中锌-空气电池的化学成分。在放电时,锌电极通过释放电子而被氧化,并且空气电极产生氢氧根离子。在电池充电过程中,锌沉积在锌电极上,氧气释放到空气电极中 [83] 。